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Abstract
The transmission of a single soliton is investigated numerically across an
interface between two Toda lattices, which are connected by a harmonic lattice.
The soliton transmission coefficient is used as a measure of transmission. When
the spring constant (κ) of the harmonic spring is small and the number of
harmonic springs is greater than or equal to 2, a delay in the transmission of
the soliton is found for proper κ . It is shown that the delay in the soliton
transmission is due to the existence of the quasi-localization of the wave in the
harmonic lattice and the agreement of the time scale of the motion between the
two springs.

PACS numbers: 42.81.Dp, 63.10.+a, 05.45.Yv

1. Introduction

In the past few decades, various aspects of the soliton have been investigated and the application
of the soliton has been developed in many fields [1–7]. It is an important problem in the study
of the basic properties of soliton propagation and in practical applications that a soliton is
scattered by an interface between nonlinear media, which support the soliton propagation.
For example, in the realistic optical soliton communication system, solitons are propagated
through several fibre segments joined by a fibre splice [8]. When a soliton passes an interface
between two segments, the soliton is scattered, causing its transmittance to shrink.

Anderson et al [9] studied soliton tunnelling to improve an optical soliton compression
using connected fibres. When a soliton passes an interface between two fibres, the transmitted
pulse contains nonsoliton waves, leading to degradation of the soliton [10, 11]. It was shown
that the nonsoliton waves can be decreased by using a proper junction of a finite-length fibre.
Kubota and Odagaki [12] studied the soliton transmission across an interface between two
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identical Toda lattices connected by a harmonic lattice. The resonant transmission of the
soliton was found by controlling the spring constant of the harmonic lattice.

We treat the Toda lattice as a representative nonlinear medium which supports the
propagation of soliton. The reasons that we treat the Toda lattice are as follows: (1) since the
Toda lattice is a discrete system, the propagation of solitons can be studied numerically without
discretization of the space coordinate. (2) Since the exact solution exists for the Toda lattice
without recourse to perturbation expansions or continuum approximations, we can change the
wave number of the soliton as large as we want. (3) Since the Toda lattice can be reduced to
the KdV equation by perturbation expansions or continuum approximations [13], the results
of the Toda lattice can be compared with those of the KdV equation. It should be noted that the
Toda lattice can be realized by a nonlinear LC ladder-type circuit [14–17] and our numerical
results can be tested experimentally [12].

In the present paper, we numerically investigate the soliton scattering by the interface,
using the same model in our recent work [12]: two identical Toda lattices are connected by
a harmonic lattice. In [12], the number of springs (denoted by N) in the harmonic lattice is
fixed at N = 1. We investigate the transmission of the soliton for N � 2 and have found an
anomalous transmission of the soliton.

The harmonic lattice does not support the propagation of soliton and thus can be interpreted
as a coupling impurity. Most of the studies on the effects of impurities on the soliton
propagation are based on continuous media [18–21]. There are few studies for the case of a
coupling impurity on discrete systems [22]. For a weak coupling impurity, the transmittance
of the soliton has a minimum as a function of the wave number of the incident soliton. The
soliton was not much affected by a strong coupling impurity [22]. It is well known that a
harmonic lattice with a light mass impurity or a strong coupling impurity has a localized mode
[23]. Many numerical [22, 24–26] and analytical studies [25, 26] have shown that localized
waves can exist at a light mass impurity or a strong coupling impurity in a nonlinear lattice.
The frequency of the localized wave in the Toda lattice decreases with the increase in the
amplitude of the localized wave [24, 26].

The present paper is organized as follows. Our model is introduced in section 2, where we
define basic quantities which are used in the following discussion. In section 3, we numerically
investigate the transmission profile of the soliton. When N � 2 and the spring constants of
the harmonic springs are chosen properly, we find that the majority of the incident soliton
stays in the harmonic lattice for a while and then a large soliton leaves the harmonic lattice
(delay in the soliton transmission). In section 4, we discuss the origin of the delay in the
soliton transmission by a comparison of the time scale of the motion between two springs. We
summarize the results of the present study in section 5.

2. Model

We consider two identical Toda lattices [27] connected by a harmonic lattice. We use
dimensionless variables defined in [12]. The Hamiltonian is given by

H =
∑

n

[
P 2

n

2
+ �n(Un)

]
, (1)

Un = Qn+1 − Qn, (2)

where Pn and Qn are the dimensionless momentum and displacement of a particle on site n,
respectively. �n is the interaction potential energy between the particles on sites n and n + 1
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Figure 1. The perspective of an incident soliton on two Toda lattices connected by a harmonic
lattice (named region II). Regions I and III are identical Toda lattices.
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Figure 2. The profile of waves, after some time the soliton passes the harmonic lattice, which
consists of transmitted (T), reflected (R) and localized (L) waves. The transmitted waves consist
of a large soliton (T1) and small waves (Tri). The vertical axis is energy density hn normalized by
the energy of the incident soliton.

given by

�n(Un) =
{

[exp(−Un) + Un − 1] for n � 0 and n � N + 1,

1
2κU 2

n for 1 � n � N,
(3)

where N denotes the number of harmonic springs and κ is a spring constant of the harmonic
springs. The equation of motion is given by

d2Qn

dτ 2
= − d

dQn

[�n(Un) + �n−1(Un−1)], (4)

where τ is the dimensionless time.
At time τ = 0, we prepare a single soliton

Un = −ln
{
1 + ω2

0 sech2[k0(n − n0) − ω0τ ]
}
, (5)

ω0 = sinh k0, (6)

as an incident wave (see figure 1), where k0 is regarded as a wave number of the soliton and
n0 denotes the location of the soliton at τ = 0. We set n0 � 0 so that the incident soliton is
far left from the harmonic lattice.

When the incident soliton passes the harmonic lattice, the incident wave is divided into
three waves: transmitted, reflected and localized waves (see figure 2). The vertical axis in
figure 2 is the normalized energy density given by

hn(τ) = 1

2E0

{
P 2

n (τ ) + �n[Un(τ)] + �n−1[Un−1(τ )]
}
, (7)
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Figure 3. The soliton transmission coefficient T1 on the (k0, κ) domain for the number of harmonic
springs (a) N = 1 and (b) N = 2. The contour spacing of the contour lines is 0.1.

where E0 is the energy of the incident soliton, given by E0 = 2(sinh k0 cosh k0 − k0). The
transmitted wave consists of a ‘large soliton’ and many small waves. Most of the energy
of the transmitted wave is carried by the large soliton. We can use the soliton transmission
coefficient [28, 29] given by

T1 = E1

E0
, (8)

as a measure of transmission, where E1 is the energy of the ‘large soliton’. We call the soliton
at the front of the transmitted wave a ‘frontier soliton’. It should be noted that in most cases,
the ‘large soliton’ is the ‘frontier soliton’.

3. Numerical results

We integrate equation (4) numerically using a third-order bilateral symplectic algorithm [30].
The setting of the numerical integration is the same as used as in [12].

3.1. κ dependence of transmission coefficient T1

Transmission coefficient T1 was obtained for various spring constants κ of the harmonic spring
and the wave number k0 of the incident soliton. In figure 3, we show T1 on the (k0, κ) domain
for (a) N = 1 and (b) N = 2. As shown in [12], figure 3(a) shows that T1 has a maximum
as a function of κ for each k0 and the maximal value is T1 � 1 (resonant transmission of the
soliton). Figure 3(b) shows that for large k0 (�2.5), T1 has two local maxima as a function
of κ: for large κ (�1) and for small κ (�0.2). For convenience, we call the second local
maximum for small κ a ‘small hump’. As we show below, the small hump is due to an
anomalous transmission of the soliton, i.e., the large soliton trapped in the harmonic lattice
for a while.

It should be emphasized that the small hump also appears for N � 3 and does not appear
for N = 1. We obtained T1 for N = 3, 4, 5, 10 and 50, and the small hump appears for κ < 1
and k0 � 2.5.

We summarize the profile of the small hump as follows: the small hump appears for
N � 2, κ < 1 and k0 � 2.5. Contrary to the resonant transmission of the soliton, the top of
the small hump shifts to smaller κ with the increase in k0. We note that the small hump is not
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Figure 4. The spacetime evolution of the energy density hn(τ) normalized by total energy for
N = 2, k0 = 3.5 and κ = 0.03. τ is the dimensionless time. Note that a large soliton passes small
waves after staying for a while in the harmonic lattice.
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Figure 5. The trapping time τtrap of the large soliton in the harmonic lattice as a function of κ for
k0 = 2.5 (×), k0 = 3.0 (◦), k0 = 3.5 (+) and k0 = 4.0 (♦). The number of harmonic springs
is N = 2.

due to the second resonance of the resonant transmission, and the second resonance exists for
N � 1 and large κ (�100).

3.2. Temporal evolution of wave

In figure 4, we show the normalized energy density hn(τ) as a function of n and τ for N = 2,
k0 = 3.5 and κ = 0.03. We note that this set of parameters corresponds to the top of the small
hump. This figure shows that at τ ∼ 20, small solitons leave the harmonic lattice and travel
in region III. The majority of the incident wave remains in the harmonic lattice for a while.
At τ ∼ 50, the majority of the remaining wave leaves the harmonic lattice and travels in
region III as a large soliton. The large soliton overtakes the small solitons that leave the
harmonic lattice earlier.

This phenomenon is a delay in the transmission of the soliton. In figure 5, we show the
trapping time τtrap of the large soliton in the harmonic lattice as a function of κ for k0 = 2.5,
3.0, 3.5 and 4.0. This figure shows that for k0 � 3.0, τtrap jumps at κ , which corresponds to
the edges of the small hump of T1.

In figure 6, we obtain the temporal evolution of the relative displacement Un for n = 2
(the harmonic spring) and n = 3 (the Toda spring) for the same parameters as in figure 4. It
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Figure 6. Temporal evolution of the relative displacement Un for n = 2 (——, the harmonic
spring) and for n = 3 (– –, the Toda spring) for N = 2, k0 = 3.5 and κ = 0.03.

should be emphasized that the evolution of U3 is mainly determined by U2 since U4 is initially
at rest. At τ � 19, the Toda spring (U3) is slightly compressed and, as a result, small waves
appear in region III. After that, the Toda spring follows the motion of the harmonic spring
with some delay. The Toda spring stretches appreciably and then compresses quickly. At
τ = 47.5, U3 is less than zero and, as a result, the large soliton appears in region III. At this
time, U2 almost returns to 0 and the energy in the harmonic lattice is almost transported to
region III.

Figure 6 also shows that the temporal evolution of U2 can be regarded as a sine function
between τ � 15 and 47.5. We set the phase of the sine function to be 0 at τ � 27 (i.e., U2 = 0
and dU2/dτ > 0). When the large soliton leaves the harmonic lattice, the phase of U2 is
between 3π/2 and 2π . This phase of U2 strongly relates to the emergence of the large soliton,
i.e., the phase of U2 satisfies the condition, so that U2 almost returns to 0 and U3 compresses
quickly.

4. Analysis and discussion

In section 3.2, we observed the temporal evolution of the wave and obtained several conditions
for the delay in the soliton transmission. In this section, we estimate the parameter region for
the delay in the soliton transmission from those conditions.

4.1. Quasi-localization

As described in section 3.2, for the delay in the soliton transmission, the majority of the
incident soliton stays in the harmonic lattice for a while, i.e., localization occurs temporarily.
For that, the system supports the existence of a temporary localization in the harmonic lattice.
The energy of the reflected waves and of the frontier soliton should be sufficiently small so
that the majority of the incident wave remains in the harmonic lattice.

4.1.1. Existence of quasi-localization. For N � 2, as can be seen from figure 6, the harmonic
spring U2 oscillates considerably, i.e., the temporary localization can exist in the harmonic
lattice for κ � 1. As shown in [12], for N = 1, no localized waves exist in the harmonic
lattice for κ < 1. As a result, the delay in the soliton transmission does not exist when N = 1.

These facts can be explained by considering localized modes in a harmonic lattice with
a sequence of weak coupling impurities. When the number of weak coupling impurities is
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Figure 7. (a) The contour lines for the energy of the frontier soliton normalized by the incident
one for N = 2 on the (k0, κ) domain. (b) The contour lines of the approximants determined by
equations (9) and (10) on the (k0, κ) domain. The contour spacing is 0.1.
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Figure 8. The contour lines of the reflected energy R for N = ∞ on the (k0, κ) domain. The
contour spacing is 0.1.

N ′ = 1, there are no localized modes. On the other hand, for N ′ � 2, there are quasi-localized
modes, where particles in the impure region oscillate almost independently of the motion of
particles outside the impure region.

4.1.2. Energy of frontier soliton. We obtained the energy of the frontier soliton (denoted
by Tf ) normalized by the energy of the incident soliton for N = 2 and plot it in figure 7(a).
This figure shows that for small k0 (�1) and large κ (�0.1), Tf is large. Tf decreases with
the decrease in κ .

4.1.3. Reflected energy. In order to show the energy of the reflected waves scattered by the
entrance of the harmonic lattice, we obtained the reflected energy (denoted by R) for N = ∞
normalized by the energy of the incident soliton and plot it in figure 8. This figure shows
that R is small for large κ (�0.1) except for intermediate k0 (1 � k0 � 2). But, for large κ

and small k0, the energy of the frontier soliton is not small, as described in section 4.1.2. As
a result, a delay in the soliton transmission can exist for large κ and large k0. Figure 8 also
shows that for fixed k0, R increases with the decrease in κ and, as a result, the delay in the
soliton transmission shrinks for rather small κ .

4.2. Two waves

As described in section 3.2, for the delay in the soliton transmission, the small frontier soliton
leaves the harmonic lattice at first and then the large soliton leaves. Here, we consider the
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origin of the smallness of the frontier soliton and the condition for the emergence of the large
soliton.

4.2.1. Frontier soliton. In this section, we estimate the energy of the frontier soliton by
considering the motion of the particles around the boundary between regions II and III, so as
to understand the transmission of the wave for small κ .

For κ � 1, the time scale of the motion of the harmonic spring is much longer than
that of the compressed Toda spring. The particles at n � N + 1 are assumed to move in a
quasi-stationary manner. We have

−κUN − exp(−UN+1) + 1 = 0. (9)

When the incident soliton comes near n = N , the particle at n = N moves to the right and
compresses the harmonic spring. When the particle at n = N stops, we estimate the relative
displacement UN+1 (the Toda spring) as follows. For simplicity, we consider the energy only
in n = [N,N + 2] and approximate its energy by half of the incident energy E0/2. Since the
particles at n = N + 1 and N + 2 move quasi-stationary, the kinetic energy of these particles
can be ignored. Therefore, we have

1
2κU 2

N + exp(−UN+1) + UN+1 − 1 = sinh k0 cosh k0 − k0. (10)

From equations (9) and (10), we obtain UN+1 numerically. We approximate the amplitude
of the frontier soliton by UN+1 and finally obtain the wave number of the frontier soliton
for various k0 and κ . We show the energy Tf of the frontier soliton normalized by E0 in
figure 7(b).

This figure shows that Tf decreases with the decrease in κ and the numerical results
(figure 7(a)) are qualitatively described. For small κ , the dependence of Tf on k0 and κ can be
qualitatively explained by taking into account the quasi-stationary motion of the Toda spring.

4.2.2. Large second soliton. As described in section 3.2, when the large soliton leaves the
harmonic lattice, the phase of Un at the end of the harmonic lattice (n = N) is between 3π/2
and 2π regarding the temporal evolution of UN as a sine function.

In order to understand the delay in the soliton transmission, we compare the periods of
two oscillators: the oscillator consists of a particle connected to a wall by the harmonic or
Toda spring, and the mass of the particle is set at 1. The half-period of the harmonic oscillator
is given by

τharm(κ) = 1

2

2π√
κ

. (11)

In the case of the Toda spring, we divide the period of oscillation at the time when the
relative displacement is U = 0 into two parts: a ‘stretching half-period’ and a ‘compressing
half-period’. Here we consider the ‘stretching half-period’. The stretching half-period τstre

depends on the energy Eos of the oscillation. For large Eos, the stretching half-period τstre can
be approximated by2

τstre =
√

8Eos. (12)

After the frontier soliton left the harmonic lattice, the energy in the harmonic lattice is less than
E0, i.e., Eos = αE0, where α is a real number in [0, 1]. We approximate α = 0.2 determined
from the numerical results on the energy density.

2 The equation of motion for the oscillator of the Toda spring is given by Q̈ = exp(−Q) − 1. For Q � 1, the
equation is well approximated by Q̈ = −1. We integrate this equation with an initial condition: Q = 0 and Q̇ = v0.
We obtain Q(τ) = −τ 2/2 + v0τ and τstre = 2v0 = √

8E.
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Figure 9. The thick curves denote the parameters (k0, κ) given by equation (14) with θharm = 3π/2
(——) and 2π (– –). Here, θharm denotes the phase of the harmonic spring at n = N when the large
soliton leaves the harmonic lattice. The thin solid curves denote the contour lines of the soliton
transmission coefficient T1, obtained in section 3.1.

The results in section 3.2 mean that the phase of UN (harmonic spring) varies from 0 to
θharm during τstre, i.e.,

τstre(k0) = θharm

π
τharm(κ). (13)

From equations (11), (12) and (13), we finally obtain

κ = θ2
harm

16α(sinh k0 cosh k0 − k0)
. (14)

The numerical results in section 3.2 show that θharm is between 3π/2 and 2π at the top of
the small hump of T1. We compare equation (14) with the contour lines of T1 in figure 9.
This figure shows that the top of the small hump of T1 is between the curves determined by
equation (14) with θharm = 3π/2 and 2π .

From equation (13), θharm/π can be regarded as the ratio between the time scales of the
motion of the two springs. The ratio between the time scales of the motion of the two springs
is important for the delay in the soliton transmission. As a result, the location of the small
hump of T1 shifts to smaller κ with the increase in k0.

4.3. Summary of analysis

In section 3.2, we observed the temporal evolution of the waves for parameters corresponding
to the small hump of T1, where the delay in the soliton transmission occurs. We obtained
the four conditions for the delay in the soliton transmission as follows: (1) the energy of the
frontier soliton is small. (2) The quasi-localization can exist in the harmonic lattice. (3) The
energy of the reflected waves is small, so that the amplitude of the quasi-localized wave is
large. (4) The phases of the two springs match, so that the Toda spring at the edge of region
III compresses quickly.

From these conditions, we estimated the parameter region for the delay in the soliton
transmission and compare it with the contour lines of T1 in figure 10. This figure shows that
the small hump of T1 is in the region that is approximately determined from the conditions (1)–
(3). This figure also shows that the position of the small hump is well represented by
equation (14) with θharm = 7π/4, which is derived from the condition (4). Moreover, it is
described in section 4.1.1 that the number of harmonic springs is N � 2 from the condition (2).
We have explained the profile of the small hump, which is summarized in section 3.1.
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Figure 10. Approximation of the parameter region for the small hump of T1 ((——) contour
lines), trimmed by three thick curves: the normalized energy of the frontier soliton, estimated by
equations (9) and (10), is equal to 0.1 (——). κ = 1 (– –), i.e., quasi-localization can exist for
κ � 1. The normalized energy of the reflected waves is equal to 0.3 (– – –). The thick dotted
curve denotes the approximant for the position of the small hump given by equation (14) with
θharm = 7π/4, i.e., the intermediate value between the thick solid and dashed curves in figure 9.

4.4. Effect of increase in N

The above analysis is mainly based on the numerical results for N = 2. For N � 3, the
parameter region for the delay in the soliton transmission can also be explained by the above
analysis. Here, we describe two changes of properties of the small hump with the increase
in N.

First, for N � 4, other small humps of T1 appear near the first small hump. From the
investigation on the temporal evolution of the wave, we found that these small humps appear
due to two sources: (1) the second resonance between two springs and (2) reflected waves
inside the harmonic lattice. With the increase in N, the small humps due to each contribution
are clearly divided. With the further increase in N, these small humps shrink.

Second, for N � 10, the top of the first small hump shifts to larger κ with the increase
in N. This fact can be explained as follows: due to the dispersion of the harmonic lattice, the
amplitude of the pulse at n = N decreases with the increase in N. As a result, the energy
density and α in equation (14) decrease. Therefore, the top of the small hump shifts to
larger κ .

5. Summary and conclusion

We have numerically investigated the transmission of a soliton between two Toda lattices
connected by a harmonic lattice using the soliton transmission coefficient T1 as a measure of
transmission.

For N � 2, large k0 (�2.5) and small κ (�1), we found that T1 has a local maximum as
a function of κ , where the delay in the transmission of the soliton occurs. By considering the
mechanism of the delay in the soliton transmission, we obtained the parameter region for the
delay in the soliton transmission on the (k0, κ) domain. The position of the local maximum
of T1 is determined by the condition that the time scale of the motion of the stretched Toda
spring being 1.5–2 times longer than that of the harmonic spring. The ratio between the time
scales of the motion of the two springs is important for the delay in the soliton transmission.
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The delay in the soliton transmission can be applied to a delay element based on a soliton.
For example, our numerical results can be tested by using the nonlinear LC circuit (described
in [12]), and a delay element can be constructed by the LC circuit. It is well known that an
optical fibre supports the propagation of solitons. It may be possible to extend our idea to
the transmission of the optical soliton in the connected optical fibres and construct an optical
soliton delay device.
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